您所在的位置:地球物理

量子场论

量子场论图示
1929年W.K.海森伯和W.泡利建立了量子场论的普遍形式。按照量子场论,相应于每种微观粒子存在着一种场。设所研究的场的系统可以用N个互相独立的场量嗘i(X,t)(i=1,2,…,N)描述,这里X是点的空间坐标,t是时间。各点的场量可以看作是力学系统的无穷多个广义坐标。在力学中可以定义与这些广义坐标对应的正则动量,记作πi(X,t)。根据量子力学原理,引入与这些量对应的算符拤i(X,t)和挸i(X,t)。对于整数自旋的粒子,可以按照量子力学写出这些算符的正则对易关系。对半整数自旋的粒子则按照约旦和维格纳的量子化方案,用场的反对易关系。在给定由拤i和挸i组成的哈密顿算符后,可以按量子力学写出场量满足的海森伯运动方程式,它们是经典场方程的量子对应。量子力学还给出计算各种物理量的期待值以及各种反应过程的几率的规则。像通常力学中的情形一样,也可以等价地选取其他的广义坐标,例如取场量嗘i(X,t) 的傅里叶分量作为广义坐标。在用到自由电磁场时,就得到前面已经叙述的结果。量子场论的这种表述形式称为正则量子化形式。量子场论还有一些基本上与正则量子化形式等价的表述形式,其中最常用的是R.P.费因曼于1948年建立并在后来得到很大发展的路径积分形式。在进行场的量子化时,必须使理论保持一定的对称性。在涉及高速现象的粒子物理学中,满足相对论不变性是对理论的一个基本要求。除此以外,还必须保证所得的结果符合量子统计的要求,即符合正确的自旋统计关系。在量子场论中这些要求都达到了。在量子场论的框架内出了自旋统计关系的一般证明。量子场论给出的物理图像是:在全空间充满着各种不同的场,它们互相渗透并且相互作用着;场的激发态表现为粒子的出现,不同激发态表现为粒子的数目和状态不同,场的相互作用可以引起场激发态的改变,表现为粒子的各种反应过程,在考虑相
互作用后,各种粒子的数目一般不守恒,因此量子场论可以描述原子中光的自发辐射和吸收,以及粒子物理学中各种粒子的产生和湮没的过程,这也是量子场论区别于初等量子力学的一个重要特点。所有的场处于基态时表现为真空。从上述量子场论的物理含义可以知道真空并非没有物质。处于基态的场具有量子力学所特有的零点振动和量子涨落。在改变外界条件时,可以在实验中观察到真空的物理效应。例如在真空中放入金属板时,由于真空零点能的改变而引起的两个不带电的金属板的作用力(卡西米尔效应)以及由于在外电场作用下真空中正负电子分布的改变导致的真空极化现象。量子场论本质上是无穷维自由度系统的量子力学。在量子统计物理和凝聚态物理等物理学分支中,研究的对象是无穷维自由度的系统。在这些分支中,人们感兴趣的自由度往往不是对应于基本粒子的运动而是系统中的集体运动,例如晶体或量子液体中的波动。这种波动可以看作波场,而且它们也服从量子力学的规律,因此量子场论同样可以应用于这些问题。
量子场论作为微观现象的物理学基本理论广泛应用于近代物理学各个分支。粒子物理学的发展不断提出场论研究的新课题,并取得了进展,它包括复合粒子场论、对称性自发破缺的场论、非阿贝耳规范场论和真空理论的新发展等几个互相联系着的方面。在研究这些问题时广泛应用了量子场论的路径积分和泛函的表达形式。自60年代后期以来规范场的研究成为场论研究的一个中心,已经解决了这类理论所特有的量子化和重正化方面的问题,阐明了规范场的一些特殊性质。1961年至1968年S.L.格拉肖、S.温伯格和A.萨拉姆建立的描述统一的弱作用和电磁作用的自发破缺规范理论,在1978年至1983年已经基本上得到实验的证实。量子色动力学作为描述强作用的规范理论也取得了一定的成就,被认为是有希望的强作用基本理论。在量子电动力学取得成功以后,量子场论在粒子物理学中取得的这些新成就使人们相信;虽然存在着发散困难这样的基本问题和在强耦合下缺少有效的近似方法的困难,量子场论仍然是解决粒子物理学问题的理论基础和有力工具。现在除规范场论中的一些问题例如所谓囚禁问题仍然是人们注意的中心外,一些新的课题如量子引力理论、超对称量子场论等正吸引着人们去进行研究。在统计物理、凝聚态理论和核理论中广泛地采用量子场论的格林函数和费因曼微扰论方法,它们已经成为这些物理学分支的基本理论工具。费因曼微扰论方法使得人们可以在微扰论展开式中分出一部分对所研究的现象起主要作用的项来作部分求和,大大提高了人们解决各种问题的能力。量子场论方法对温度不为零的统计物理学以及超导和量子液体等现象的理论发展起了非常重要的推动作用。统计物理学中有些现象本质上不一定是量子效应,但由于是无穷维自由度的问题,它们与量子场论问题在数学形式和物理内容上都有十分相似之处。量子场论方法对这些问题也有重要的应用。例如,重正化群方法的思想和工具对解决统计物理学中长久未能解决的临界现象问题起了关键性的作用。正因为量子场论已成为近代物理学各分支的共同基础理论,量子场论的任何一个重要进展都会对不只是一个分支的发展有重要的推动作用。
虽然量子场论没有严格的数学基础,但是物理学家(主要是弦论学家)应用量子场论的方法与技巧可以得到很多数学家难以想象的结果。上世纪八十年代初,物理学家使用超对称量子力学的方法给出了指标定理的物理证明。随后八十末,Edward Witten应用Dirac代数中的技巧重新证明了丘成桐用繁杂的技巧证的广义相对论中的正质量猜想,同样也是Witten发展了拓扑量子场论,拓扑弦论,并应用三维Chern-Simons 理论和共形场论的结果得到了扭结理论中的Jones多项式。拓扑弦论后来发现与极端黑洞的熵有关。1998年Gopakuma,Vafa发现了拓扑弦与Chern-Simon理论的大N对偶。在2003年N. Nekrassov应用拓扑场的方法得到N=2 的超对称理论的配分函数。最近几年,Vafa及其合作者建立了拓扑弦的统计力学模型,并发现这一模型可以得到一系列的Wall-Crossing 公式。 

  设为首页 | 关于我们  |   版权信息  |  隐私保护  |  免责声明  |  合作伙伴  |  联系我们
 中华自然科学网(SCICN.NET), All Rights Reserved
  冀ICP备17034147号   客服及报障邮箱:sci@scicn.net